a2 United States Patent

Douglas et al.

US009299434B2

US 9,299,434 B2
Mar. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

DEDICATED EGRESS FAST PATH FOR
NON-MATCHING PACKETS IN AN
OPENFLOW SWITCH

Applicant: Netronome Systems, Inc., Santa Clara,
CA (US)

Gareth R. Douglas, Ballymena (GB);
Ciaran J. Toal, Newtownabbey (GB);
Sandra Scott-Hayward, Belfast (GB)

Inventors:

Assignee: Netronome Systems, Inc., Santa Clara,

CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 255 days.

Appl. No.: 14/151,730

Filed: Jan. 9,2014

Prior Publication Data

US 2015/0194215 Al Jul. 9, 2015

Int. Cl1.
G1IC 15/04
GO6F 13/40
HO4L 12/743
HO4L 12/819
HO4L 12/721

U.S. CL
CPC

(2006.01)
(2006.01)
(2013.01)
(2013.01)
(2013.01)

G11C 15/04 (2013.01); GO6F 13/4022
(2013.01); HO4L 45/7453 (2013.01); HO4L
45/7457 (2013.01); GOGF 2213/0026 (2013.01);
HO4L 45/38 (2013.01); HO4L 47/21 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,633,871 B1* 12/2009 Calloncccceceene. HO04L 47/10
370/230.1
8,626,955 B2* 1/2014 Veal ..o GOG6F 9/5088
709/238
8,854,972 B1* 10/2014 Li .ocovevivinicin HO4L 47/12
370/235
2003/0187914 Al* 10/2003 Kaniyar HO4L 67/1002
709/201
2009/0193216 Al* 7/2009 Melvin HOA4L 49/9094
711/166
2014/0153571 Al* 6/2014 Neugebauer HOA4L 45/7457
370/392
2014/0215561 Al* 7/2014 Roberson HO4L 63/08
726/3
2015/0117458 Al* 4/2015 Gurkan HO41 45/72
370/392
2015/0124815 Al* 5/2015 Beliveau HO4L 45/7453
370/392
2015/0131666 Al* 5/2015 Kang ... HOAL 45/745
370/392
2015/0163146 Al* 6/2015 Zhang HO4L 47/125
370/238
2015/0304212 Al* 10/2015 Zhouccceen. HOA4L 45/7457
370/392

* cited by examiner

Primary Examiner — Kaushikkumar Patel
(74) Attorney, Agent, or Firm — Imperium Patent Works
LLP; T. Lester Wallace; Mark D. Marrello

(57) ABSTRACT

A first packet of a flow received onto an OpenFlow switch
causes a flow entry to be added to a flow table, but the
associated action is to perform a TCAM lookup. A request is
sent to an OpenFlow controller. A response OpenFlow mes-
sage indicates an action. The response passes through a spe-
cial dedicated egress fast-path such that the action is applied
and the first packet is injected into the main data output path
of'the switch. A TCAM entry is also added that indicates the
action. A second packet ofthe flow is then received and a flow
table lookup causes a TCAM lookup, which indicates the
action. The action is applied to the second packet, the packet
is output from the switch, and the lookup table is updated so
the flow entry will thereafter directly indicate the action.
Subsequent packets of the flow do not involve TCAM look-
ups.

20 Claims, 6 Drawing Sheets

s
"

[T \
I ”
P T —

L T P Moo
I L
SO RO T

| 3

FLOWENTRY IN THE FLOW TABLE FOR THE FLOW, THE FLOW TABLE LOKUP OPERATION
15 PERFORMED BY A FLOA TABLE LOOKUP FUNCTIONALITY.

204

PERFORMING A

FLOW. THE TCAM LOOKUP OPERATI
FUNGT

TCAM ENTRY FOR THE
ION IS PERFORMED BY A TCAV LODKUP
TIONALITY,

I

205

I

26

[

257

APPLYING THE ACTION TO THE FIRST PACKET AND THEREBY OUTPUTTING THE FIRST
PAGKET FROM AN OUTPUT FORT OF THE OPENFLOW SWITCH.

|

U.S. Patent Mar. 29, 2016 Sheet 1 of 6 US 9,299,434 B2

1
4 /
/ / : /1
/ OPENFLOW /o
// CONTROLLER //

/ /
A — ~
| |
| |
| |
| |
: OPENFLOW
SWITCH
3
4
s [|
/I /I
/, I // |
NACkET /| EXPANSION CARD rol
A 6 /o
87 | § |
/ 16 / [
—S—> / PHY NP TCAM/ |
7 o719 . 86/ I
INCOMING ~ ,/41..& BAYL. 24 “'I:— !
PACKET /"1 K l
a PHY JNE
AT | pRY B
/PH1 PH2 s | 1 !
J PHY DRAM ,
/ 15 23 vy y
MEMORY 2=~~~ ~ iy Anigiiebeittly A |
27 : ; \ :
HOST ~ f ‘ ! SWITCH
SOFTWARE | ,/ _PCL | MOTHERBOARD
68 L EXPRESS | 7
Y 4 BUS |
! 29
7 / |
(28 _ y, I
x36 "HOST"
CPU 69
26

OPENFLOW SWITCH AND OPENFLOW
CONTROLLER

FIG. 1

U.S. Patent Mar. 29, 2016 Sheet 2 of 6 US 9,299,434 B2

OPENFLOW
2 ~1 CONTROLLER

NFP POINTER 79 TO PACKET
EXPANSION INTEGRATED HEADER IS IN THE OPENFLOW MESSAGE#1
CARD CIRCUIT QUEUE, ENTIRE PACKET 4
6 24 IS STORED IN DRAM
OPENFLOW MESSAGE#2

|
[' PCI I
I I B4~ |
| INPUT) LOAD |
e PALANCER ME | ATTENPT SXACT j |
oy 1! J ! BOINTER 45 |~ MATCHLOOKUR~ ,, ATTEMPT !
—;»—5* . : N INFLOWTABLE > Qe :
30 ME
Pi2 - ¥ HAS"E/’]ID #2 :
B & [yh i
ne iLME ME 49 PACKET |
e) o o HEADER |
c,':’Iﬂ—ﬂ : 4 . %0 :
| | |
Lo FASsEL i |
! PACKET M
|
I 7. 80~{] 3 I
I | |
T et |
| |
: I I
A e o ______ |
! | EXTERNAL FLOW ENTRY FLOW TABLE I
'] "DRAM FLOWKEY 73 ACTION SET 70 o
|l | INTEGRATED 81 82 J o
| | CIRCUIT HASH / .. o
I | 25 BUCKET 4 124 T T T T T 2L
T e o s s e e e A B
'l | STORED Lo
'I' | PACKETS Lo
| [
T N : |
|
: | | L
TR I \ | [L»
' 72 O
| | 89
1 P#2 [
o "‘| P#3 | DUE
oo I I FLOWID—F= 3~ STRUCTURE L
i] Lo
| L4 | |
1 | | ° (o
I I . [
K | Lo
| | |

U.S. Patent Mar. 29, 2016 Sheet 3 of 6 US 9,299,434 B2

INFORMATION 87 FROM
HOST 69

e |
| |
| |
i -
A R DEDICATED ~ 7 | y
! "HOST-TO-TX" | ourpuT |1
| ME | PORTS 1|
: 87 65) | \::
s j]] ME DESCRIPTOR : - | P#1
88 |
; 67
% >\<>/, X Lf» D e >
n " P#2
Ve E
el
ol

TX ME USES THE DESCRIPTOR TOI
RETRIEVE THE PACKET AND TO 1
CAUSE PACKET TO BE OUTPUT |

FROM THE INDICATED PORT |

TCAM
INTEGRATED
CIRCUIT
86

KEY TO FIG. 2

|
1
|
FIG. ! FIG.
2A : 2B
|
i

L
@
N
0o

U.S. Patent Mar. 29, 2016 Sheet 4 of 6 US 9,299,434 B2

73

SOURCE IPv4 (31:0)
DESTINATION IPv4 (31:0)

DESTINATION PORT (31:16) SOURCE PORT (15:0)
ETHERNET TYPE (31:16) INGRESS PORT (16:8) | IPv4 PROTOCOL (7:0) -
DESTINATION MAC LOWER (31:0) P
SOURCE MAC LOWER (31:16) DESTINATION MAC UPPER (15:0) N
SOURCE MAC UPPER (31:0)
MPLS LABEL (31:12) VLAN ID (11:0)
TCAM RULE COUNT ADDRESS (31:16) TCAM VERSION (15:0)
TIMESTAMP (31:0)
_—> RULEACTIONFIELDO (31:0)
RULE ACTION FIELD 1 (31:0)
RULE ACTION FIELD 2 (31:0)
RULE ACTION FIELD 3 (31:0)
RULE ACTION FIELD 4 (31:0)
RULE ACTION FIELD 5 (31:0)

/

RULE ACTION FIELD 0 MAY CONTAIN
ANINSTRUCTION TO PERFORMA ONE FLOW ENTRY

TCAM LOOKUP OPERATION
FIG. 3

84

PORT NUM (31:24) RESERVED (23:16) | ACTION TYPE (15:0)
MPLS HEADER (31:0)
DESTINATION MAC LOWER (31:0)
SOURGE MAC LOWER (15:0) | DESTINATION MAC UPPER (15:0)
SOURCE MAC UPPER (31:0)
DESTINATION IPv4 (31:0) | VLAN HEADER (15:0)

RULE ACTION STRUCTURE

FIG. 4

U.S. Patent Mar. 29, 2016 Sheet 5 of 6 US 9,299,434 B2

200

(START)
201

y 2
RECEIVING A FIRST PACKET OF A FLOW ONTO AN OPENFLOW SWITCH.

202
y ¢
GENERATING A HASH FROM THE FIRST PACKET AND USING THE HASH TO DIRECT A
DESCRIPTOR FOR THE FIRST PACKET TO ONE OF A PLURALITY OF WORKER
PROCESSORS. THE DESCRIPTORS FOR ALL PACKETS OF THE FLOW WILL BE DIRECTED
TO THE SAME ONE WORKER PROCESSOR.

’ 293
PERFORMING A FLOW TABLE LOOKUP OPERATION ON A FLOW TABLE AND FINDING NO
FLOW ENTRY IN THE FLOW TABLE FOR THE FLOW. THE FLOW TABLE LOOKUP OPERATION
IS PERFORMED BY A FLOW TABLE LOOKUP FUNCTIONALITY.

’ 294
PERFORMING A TCAM LOOKUP OPERATION AND FINDING NO TCAM ENTRY FOR THE
FLOW. THE TCAM LOOKUP OPERATION IS PERFORMED BY A TCAM LOOKUP
FUNCTIONALITY.

205
y 2
SENDING A REQUEST OPENFLOW MESSAGE TO AN OPENFLOW CONTROLLER. THE
REQUEST REQUESTS INSTRUCTIONS ON WHAT TO DO WITH THE FIRST PACKET.

206
Y P

RECEIVING A RESPONSE OPENFLOW MESSAGE FROM THE OPENFLOW CONTROLLER.
THE RESPONSE IS INDICATIVE OF AN ACTION TO APPLY TO THE FIRST PACKET.

207
y P
APPLYING THE ACTION TO THE FIRST PACKET AND THEREBY OUTPUTTING THE FIRST
PACKET FROM AN OUTPUT PORT OF THE OPENFLOW SWITCH.

U.S. Patent Mar. 29, 2016 Sheet 6 of 6 US 9,299,434 B2

IN RESPONSE TO THE RESPONSE OPENFLOW MESSAGE, UPDATING THE TCAM LOOKUP
FUNCTIONALITY SO THAT THE TCAM LOOKUP FUNCTIONALITY HAS A TCAM ENTRY FOR
THE FLOW. THE UPDATING OCCURS BEFORE A SECOND PACKET OF THE FLOW IS
RECEIVED. A FLOW ENTRY IS ADDED TO THE FLOW TABLE FOR THE FLOW WHERE THE
INDICATED ACTION OF THE FLOW ENTRY IS AN INSTRUCTION TO PERFORM A TCAM
LOOKUP.

209
h 4 2

RECEIVING A SECOND PACKET OF THE FLOW ONTO THE OPENFLOW SWITCH.

210
A 4 !
GENERATING A HASH FROM A HEADER OF THE SECOND PACKET AND USING THE HASH
TO DIRECT A DESCRIPTOR FOR THE SECOND PACKET TO THE SAME PROCESSOR.

21
2

PERFORMING A TCAM LOOKUP OPERATION AND THEREBY USING THE TCAM ENTRY TO
IDENTIFY THE ACTION.

212
i

UPDATING THE FLOW TABLE FUNCTIONALITY SUCH THAT THE FLOW TABLE ENTRY FOR
THE FLOW INDICATES THE ACTION.

213
2

APPLYING THE ACTION TO THE SECOND PACKET AND THEREBY OUTPUTTING THE
SECOND PACKET FROM THE OUTPUT PORT OF THE OPENFLOW SWITCH.

A 4 KEY TOFIG. 5
(END)

FIG.
5A

FIG.
5B

FIG. 5B

US 9,299,434 B2

1
DEDICATED EGRESS FAST PATH FOR
NON-MATCHING PACKETS IN AN
OPENFLOW SWITCH

TECHNICAL FIELD

The described embodiments relate generally to the control
and operation of OpenFlow switches and to related structures.

BACKGROUND INFORMATION

A type of networkswitch, sometimes referred to as an
OpenFlow switch, receives packets of a flow onto one of
several input ports. For each such packet, the switch examines
parts of the headers of the packet, and from these headers
determines the flow to which the packet belongs. For each
such flow of packets, the switch has been preconfigured so
that it will output packets of that flow onto a predetermined
one of the output ports. Such a switch can be thought of as
having a data plane through which packets pass between input
ports and output ports, and a control plane through which
switch operation can be controlled and monitored. A proto-
col, known as the OpenFlow protocol, has been developed to
standardize the control plane interface to such OpenFlow
switches. In one type of operation, an OpenFlow controller
sends an OpenFlow switch an OpenFlow message. This
OpenFlow switch recognizes the standard OpenFlowmes-
sage and responds by adding a flow entry to a flow table in the
OpenFlow switch. The flow entry may, for example, include
an instruction to apply if the switch receives a packet of the
flow. If an incoming packet is received onto the OpenFlow
switch, header information as set forth above is used to check
the flow table to determine whether a flow entry for the flow
is stored in the flow table. The identified flow entry indicates
actions that are to be applied. An example of an action is to
send the packet out of the OpenFlow switch via a particular
output port.

In addition to the OpenFlow message that instructs an
OpenFlow switch to add a flow entry into a flow table, there
are other types of OpenFlow messages through which the
OpenFlow controller can cause an OpenFlow switch to add,
update, or delete flow entries from flow tables. The above
description of OpenFlow switches, an OpenFlow controller,
and the OpenFlow protocol is very simplified. For more
detailed information on the OpenFlow protocol, see for
example OpenFlow Switch Specification, Version 1.3.1
(Wire Protocol 0x04), Sep. 6, 2012, available from the Open
Networking Foundation.

SUMMARY

An NFP (Network Flow Processor) integrated circuit of an
OpenFlow switch includes an RX processor, a load balancer
processor, a plurality of worker processors, a host interface
circuit, a dedicated host-to-TX processor, and a TX processor.
The NFP integrated circuit, a host, an external memory, and
an external TCAM integrated circuit together realize a flow
table lookup functionality and a TCAM lookup functionality.

In one operational example, a first packet of a new flow is
received onto the OpenFlow switch and onto the NFP inte-
grated circuit via the RX processor. The RX processor stores
the packet in the external memory. Some of the header infor-
mation of this first packet is a flow key. On the NFP integrated
circuit, a hash is generated from the flow key of this first
packet. The load balancer processor uses the hash to send a
descriptor for the first packet to one of the worker processors,
where the descriptor indicates where the first packet is stored

10

20

40

45

50

2

in external memory. The worker processor then causes a flow
table lookup to be performed using the flow table lookup
functionality, but no flow entry is found that matches the flow
key. Because no matching flow entry is found, the worker
processor causes a TCAM lookup operation to be performed
using the TCAM lookup functionality, but no match is
returned from the TCAM lookup functionality either. As a
result of there being no match found by the flow table func-
tionality or by the TCAM lookup functionality, the worker
processor causes a flow entry to be entered into the flow table
for the flow, but the action associated with the flow table entry
is an instruction to do a TCAM lookup operation. The flow
table entry does not indicate an actual action to apply. In
addition, a request OpenFlow message is sent via the host
interface circuit and the host from the OpenFlow switch to an
OpenFlow controller. The OpenFlow message is a request for
instructions on what to do with the first packet.

A response OpenFlow message is received back from the
OpenFlow controller to the host. The host causes the first
packet to be retrieved from external memory. The hostapplies
the instructions (actions) to the first packet, and then sends the
packet via the host interface circuit to the host-to-TX proces-
sor. The path from the host, through the host interface circuit,
through the host-to-TX processor, to the TX processor is a
fast-path path that the OpenFlow controller can use to inject
packets into the main egress path of the NFP processor inte-
grated circuit. The TX processor outputs the first packet from
an output port of the OpenFlow switch in accordance with the
action indicated by the OpenFlow controller. In response to
the response OpenFlow message to the host, the host causes
the TCAM lookup functionality to be updated so that the
TCAM lookup functionality now has a TCAM entry for the
flow, and so that the TCAM entry for the flow identifies the
action indicated by the OpenFlow controller. This TCAM
functionality updating occurs before a second packet of the
flow is received.

The second packet of the flow is then received onto the NFP
integrated circuit via the RX processor. As was done with the
first packet, a hash is generated from the flow key of header
information of the second packet. The load balancer proces-
sor uses the hash to direct a descriptor for the second packet
to the same worker processor that handled the descriptor for
the first packet. The worker processor causes a table lookup
operation to be performed by the flow table lookup function-
ality. A matching flow entry is found in the flow table, but the
action of the flow entry is the instruction to perform a TCAM
lookup. The TCAM lookup operation is therefore performed
by the TCAM lookup functionality, and a match is found. The
matching TCAM entry identifies the action (the action that
was determined by the OpenFlow controller in response to the
first packet). Once the worker processor is aware of the actual
action to be executed, the worker processor causes the flow
table functionality to be updated such that the flow table entry
for the flow now directly identifies the action (and does not
just contain an instruction to perform a TCAM lookup). The
worker processor applies the action to the second packet, and
as a result the second packet is output via the TX processor
from the same output port from which the first packet was
output.

At this point, the flow table contains a flow entry for the
flow, and the flow entry directly identifies the action. Each
subsequent packet of the flow is thereafter processed by the
same worker processor that in turn causes the flow table
lookup functionality to perform a flow table lookup. The flow
table lookup finds the flow entry for the flow, the action by the
flow entry is determined, and the action is applied to the
subsequent packet without any TCAM lookup operation hav-

US 9,299,434 B2

3

ing been attempted, and without any request OpenFlow mes-
sage having been sent to the OpenFlow controller.

Further details and embodiments and techniques are
described in the detailed description below. This summary
does not purport to define the invention. The invention is
defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, where like numerals indicate
like components, illustrate embodiments of the invention.

FIG. 1 is a diagram of a system 1 involving an OpenFlow
controller 2 and an OpenFlow switch 3.

FIGS. 2A and 2B together form a FIG. 2. FIG. 2 is a
diagram that shows OpenFlow switch 3 of FIG. 1 in further
detail.

FIG. 3 is a diagram of flow entry 73.

FIG. 4 is a diagram of rule action structure 84.

FIGS. 5A and 5B together form a FIG. 5. FIG. 5 is a
flowchart of amethod 200 of operation of the system 1 of FIG.
1.

DETAILED DESCRIPTION

Reference will now be made in detail to some embodi-
ments of the invention, examples of which are illustrated in
the accompanying drawings.

FIG. 1 is a diagram of a system 1 involving an OpenFlow
controller 2 and an OpenFlow switch 3. The OpenFlow con-
troller 2 and OpenFlow switch 3 communicate with one
another in accordance with the OpenFlow protocol by send-
ing each other OpenFlow messages, such as OpenFlow mes-
sages 4 and 5. OpenFlow switch 3 includes an expansion card
6 (a printed circuit board) and a motherboard 7. Disposed on
expansion card 6 is a number of input ports 8-11, a number of
output ports 12-15, a number of corresponding PHY circuits
16-23, a Network Flow Processor (NFP) integrated circuit 24,
an amount of external DRAM 25, as well as other circuitry
(not shown). Disposed on motherboard 7 is a Central Process-
ing Unit (CPU) 26 such as an x86 architecture processor, an
amount of external memory 27, a network port 28 usable for
communication with the OpenFlow controller 2, as well as
other circuitry (not shown). The NFP 24 and the CPU 26
communicate with one another across a PCl-express bus
structure 29. In one example, there are many such switches
that are intercoupled together to form a subnetwork of
switches. In one example, the subnetwork is an MPLS sub-
network of OpenFlow switches. Each of the OpenFlow
switches of this MPLS subnetwork has a dedicated commu-
nication path to the OpenFlow controller via its network port
28. Host software 68 that is executed by CPU 26 is stored in
memory 27. The functionality of CPU 26 and host software
68 is also generally referred to as the “host” 69.

FIGS. 2A and 2B form a single figure, FIG. 2. FIG. 2 is a
diagram that shows OpenFlow switch 3 in further detail. The
NFP integrated circuit 24 includes a receiver microengine 30
(denoted “RX ME”), a load balancer microengine 31 (de-
noted “LB ME”), sixteen queues 32-47, sixteen worker
microengines 48-63 (denoted ME#1-ME#16), a PCI bus
interface circuit 64, an OpenFlow egress queue 65, a dedi-
cated “Host-to-TX” microengine 66, a transmitter
microengine 67 (denoted “TX” ME), as well as other circuits
(not shown).

In one operational example, an incoming packet P#1 72 is
received onto the switch and onto expansion card 6. This
packet P#1 is the first packet of a flow. Packet P#1 may be an
IP packet prepended by one or more MPLS labels. In the

10

15

20

25

30

35

40

45

50

55

60

65

4

present example, there is no flow entry in flow table 70 for the
flow. Packet P#1 is received via input port 8 and is passed to
receiver ME30. RX ME 30 stores the packet P#1 72 into
external DRAM 25 and passes a descriptor 79 to load bal-
ancer LB ME 31. The descriptor 79 includes the DRAM
address where the packet is stored, the packet length in bytes,
and the input port number.

LB ME 31 uses address information in the descriptor 79 to
retrieve the packet header 80 from DRAM 25. From the
packet header 80, the LB ME 31 extracts a set of fields. From
these fields of the header, the LB ME31 uses a first hash
function to generate a first hash. The first hash is used by the
LB ME 31 to send descriptor 79 to one of the sixteen queues
32-47. The descriptor 79 indicates where the packet P#1 has
been stored in external DRAM 25. In the present example,
104 bits of header information are used to generate the first
hash. This 104 bits is the so-called OpenFlow five-tuple,
consisting of: Source and Destination [Pv4 headers, Source
and Destination Ports and IPv4 protocol.

Each such first hash value identifies a unique and different
one of the queues such that all packets for a given flow will be
directed by the load balancing I.B ME 31 to the same queue.
Packets of a given flow will therefore be in order within a
queue. In the example being described, the descriptor for
packet P#1 is present in queue 32. From queue 32 the descrip-
tor to packet P#1 is passed to ME#1 48.

ME#1 48 uses the descriptor 79 to retrieve the packet
header 80 from DRAM. From the packet header 80, the ME#1
extracts another set of header fields. This other set of header
fields is referred to as the flow key 81. In the present example,
the flow key 81 is the so-called 11-tuple. The 11-tuple is 256
bits. From the 256-bit flow key, ME#1 48 uses a second hash
function to generate a second hash. The second hashisused to
perform a look-up operation for first packet P#1 72.

In this example, each hash bucket of flow table 70 has eight
flow entry fields. Each flow entry field may contain a flow
entry or may be empty. Reference numeral 74 identifies one
hash bucket. Hash bucket 74 has eight flow entry fields. The
first flow entry field is occupied with a flow entry 73. The flow
entry 73 includes the flow key 81 and a corresponding action
set 82. (Although what is stored in the flow entry is actually an
indication of an action or a set of actions, the flow entry is
described in a general and less precise manner as simply
storing the action or action set.)

Inthe operation example being explained, a lower set of the
hash bits of the second hash is used as an index to a hash
bucket in DRAM. An upper set of the hash bits of the second
hash are used to identify a flow entry from the indexed hash
bucket. If a match is found, the combination of the complete
second hash is used to generate an index to the hash bucket in
the flow table 70. For each matching flow entry in the hash
bucket, the stored flow key of the flow entry is compared with
the full 256-bit flow key 81 of the incoming packet. All the
matching flow entries are checked in this way to find the flow
entry for P#1 in flow table 70.

In the present example, there is no flow entry in the hash
bucket 74 that matches the 256-bit flow key 81 of packet P#1.
In response, ME#1 48 causes a flow entry for the new flow to
be written into the identified hash bucket in flow table 70,
where this new flow entry includes the 256-bit flow key 81 for
packet P#1.

Because no flow entry was found in flow table 70 for the
flow of the incoming first packet P#1, the ME#1 next causes
a TCAM lookup operation to be performed. The TCAM
lookup operation may actually be a TCAM emulation opera-
tion performed in software using a table of TCAM values
stored in external DRAM 25. The TCAM table of TCAM

US 9,299,434 B2

5

values 76 is set up to enable wildcard matching of various bits
in the 256-bit header to identify a matching action. Each
TCAM entry includes a TCAM match value, that may include
wildcard bits, as well as a corresponding index (flow ID) used
to address a rule action structure stored in an action table 78.
Reference numeral 84 identifies one rule action structure that
is identified by index 85. The rule action structure specifies an
action, or an action set.

In the present example, the TCAM lookup operation is
performed by a separate TCAM integrated circuit 86. The
TCAM integrated circuit 86 is coupled to the NFP integrated
circuit 24 by a parallel bus. The TCAM table is stored in the
TCAM integrated circuit. TCAM entry 77 is an example of
one such TCAM entry. The index (flow ID) 85 points to
corresponding rule action structure 84 (that specifies an
action set) stored in action table 78.

In the present example, the TCAM lookup operation also
does not return a match because first packet P#1 72 is the first
packet of the new flow. As a result of the TCAM lookup
operation not resulting in a match, the ME#1 48 causes a flow
entry (flow entry 73) for the flow of first packet P#1 72 to be
added to flow table 70. The action portion of this new flow
entry 73, however, contains an instruction to perform a
TCAM lookup operation. This instruction to perform a
TCAM lookup operation is an instruction to pass the 11-tuple
header (flow key 81) to the TCAM for the lookup operation.
Inaddition, the ME#1 48 causes a request OpenFlow message
4 to be sent to the OpenFlow controller 2 via PCI interface
circuit 64. The PCI interface circuit 64 actually in this case
communicates with the host 69 across PCI bus 29. This com-
munication includes the descriptor 79 that indicates where the
packet stored in DRAM. The host 69 in turn generates and
sends the OpenFlow message 4 to the OpenFlow controller 2
via port 28. OpenFlow message 4 is a request that the Open-
Flow controller tell the switch 3 what to do with packet P#1.
OpenFlow message 4 includes a descriptor of the packet P#1.
The descriptor includes the 256-bit flow key 81 of packet P#1
as well as the descriptor 79 indicating where in DRAM 25 the
first packet P#1 is stored.

OpenFlow controller 2 responds by returning a second
response OpenFlow message 5 to the switch 3. OpenFlow
message 5 is received via port 28 and host 69. This OpenFlow
message 5 contains an action set to be performed on packet
P#1 and all subsequent packets of that flow. In the present
example, the action set includes an instruction to output the
packet P#1 from a particular output port. Host 69 receives the
OpenFlow message 5 and applies the action set to packet P#1
in DRAM. As part of applying the action set, the host 69
writes information 87 into the OpenFlow egress queue 65 via
PCI interface circuit 64. This information 87 includes: 1) the
DRAM address where the packet P#1 is stored, 2) the packet
length in bytes, and 3) the output port out of which packet P#1
is to be output. OpenFlow egress queue 65 is exclusively for
communication between the PCI interface circuit 64 and the
TX ME 67. In addition, host 69 programs and interacts with
the TCAM lookup functionality, via PCI interface 64, so that
the TCAM lookup functionality contains a TCAM entry,
where the TCAM entry includes the 256-bit flow key 81 of the
packet and an index (flow ID). It is the host 69, and not the
worker ME#1 that initiates and controls the TCAM updating.
The index (flow ID) of the new TCAM entry identifies a rule
action structure in action table 78, where the rule action
structure identified indicates the action (or action set) that was
specified by the OpenFlow controller for the flow. Host 69
interacts with NFP 24, and causes the TCAM functionality to
be programmed in this way, via PCI interface 64.

10

15

20

25

30

35

40

45

50

55

60

65

6

Dedicated “Host-to-TX” microengine 66 receives the
information 87 from queue 65 and then processes and trans-
lates the information 87 into a corresponding descriptor 88 in
the appropriate form for TX ME 67, so that TX ME 67 will
inject the packet P#1 into the main data flow of packets being
handled by the switch. Host-to-TX ME 66 causes this inject-
ing to occur by passing the descriptor 88 for packet P#1to TX
ME 67. Descriptor 88 includes: 1) the payload pointer to
where packet P#1 is stored in DRAM, 2) the packet length, 3)
the [.2 header information, and 4) the output port that packet
P#1 should be output from. The passing of descriptor 88 to the
TX ME 67 is indicated by arrow 71 in FIG. 2. When TX ME
67 receives the descriptor 88, the TX ME 67 uses information
in the descriptor 88 to pull the packet P#1 from DRAM. In the
case of first packet P#1 in this example, the TX ME 67 then
supplies packet P#1 to the output port 12 indicated by descrip-
tor 88. TX ME 67 does not initiate any tflow table lookup
operations, nor does TX ME 67 initiate any TCAM lookup
operations.

Host-to-TX ME 66 has additional capability for specific
packet processing requirements. For example, to support port
switching internal to the NFP, of which host 69 is unaware.
The path from the OpenFlow controller 2, through the dedi-
cated “Host-to-TX”” ME 66, to TX ME 67, and out of the NFP
integrated circuit 24 is a dedicated fast-path for non-matching
first packets of flows.

At this point, there is a flow entry in flow table 70 for the
flow of packets of packet P#1, but the action set portion of that
flow entry is an instruction to perform a TCAM lookup. The
action set portion of the flow entry does not indicate any other
action or action set. The TCAM integrated circuit 86 has been
loaded so that a TCAM entry for the flow is present, and so
that the flow ID of this TCAM entry points to the rule action
structure in the action table 78 that in turn indicates the action
specified by the OpenFlow controller.

Next, the second packet P#2 89 for the flow is received onto
switch 2. Packet P#2 passes through the same path that packet
P#1 passed. LB ME 31 uses the first hash function to generate
the same first hash value, so packet P#2 89 is directed to the
same worker ME#1 to which the first packet P#1 was
directed. For this second packet P#2, the worker ME#1 48
performs a flow table lookup operation in the flow table 70. A
match is found because a flow entry for the flow was previ-
ously added to the flow table as a result of packet P#1 being
handled. When the worker microengine ME#1 48 requests
the flow table lookup from the flow table functionality, how-
ever, the flow table lookup process returns the action set part
of'the flow entry, but this action set part is just an instruction
to perform a TCAM lookup. A TCAM lookup is therefore
automatically attempted. The TCAM query is successful
because the TCAM 86 was loaded with a matching TCAM
entry by the host 69 as a consequence of the host 69 receiving
the OpenFlow message for the first packet P#1. The TCAM
lookup query returns the flow ID of the TCAM entry, which in
turn identifies the rule action structure in action table 78 for
the flow, which in turn indicates the action (or action set) to be
performed. ME#1 48 obtains the action (or action set) in this
way, and then causes the action (or action set) to be added to
the flow entry for the flow in flow table 70. Accordingly, a
future query of the flow table lookup process for this flow will
return the actual action (or action set) without consulting the
action table, and will not just return an instruction to perform
a TCAM lookup.

In the process flow of the second packet P#2 89, ME#1 48
executes the action (or action set) on the second packet 89
stored in DRAM. In this case, ME#1 does not read the second
packet 89 out of DRAM. ME#1 forwards a descriptor for the

US 9,299,434 B2

7

packet P#2 directly to the TX ME67 for egress processing
(thereby bypassing the OpenFlow controller 2). TX ME 67
uses the descriptor to retrieve the second packet P#2 89 from
DRAM 25. In the present example, the action is to output the
second packet P#2 from the switch via the same output port
from which packet P#1 was output.

At this point, the flow table 70 has been loaded to have a
flow entry for the flow, where the action set portion of the flow
entry identifies the action (or action set) specified by the
OpenFlow controller in OpenFlow message 5. The indication
of the real action to be executed has now replaced the initial
instruction to perform a TCAM lookup. Accordingly, each
subsequent packet 90 of the flow that is received onto the
switch is stored into DRAM and is processed by the same
worker microengine ME#1. The ME#1 causes a flow table
lookup operation to be performed, which results in the flow
entry being found in the flow table. The action portion of the
flow entry indicates the action (or action set) to be applied to
the packet 90. Once the ME#1 learns of the action (or action
set), the ME#1 executes the action (or action set) on the
packet stored in DRAM and sends a descriptor directly from
the worker ME#1 to the TX ME 67, where the descriptor
includes address information (a pointer) to where the packet
90 is stored in DRAM and where the descriptor indicates how
the packetis to be output from the switch. The TX ME 67 uses
the address information from the descriptor to retrieve the
packet 90 from DRAM 25 and then outputs the packet 90
from the switch in accordance with the indicated action as
specified by the descriptor.

TCAM lookup operations can be a bottleneck in packet/
flow classification systems. In a first novel aspect, the method
described above allows the use of TCAM lookups in such
systems to be limited so that the requirement for TCAM
queries/accesses can be similarly minimized. For the match-
action functionality required by the OpenFlow standard, the
method uses a flow table lookup process in addition to a
TCAM lookup process. Only the first two packets of a flow
cause TCAM lookups to occur in order to determine the
action (or action set) to execute on those packets. The actions
for subsequent packets are determined using only flow table
lookups. Application of the method results in accelerated
switch throughput without use of a large hardware TCAM.

In a second novel aspect, a dedicated host-to-TX
microengine is provided so that a fast-path from an OpenFlow
controller to the outputting TX functionality ofthe OpenFlow
switch exists for packets, the actions for which have been
determined by the OpenFlow controller. An advantage of the
fast-path is that packets can be modified by the host and sent
directly to the transmitting functionality of the switch. With-
out this, such a modified packet would otherwise need to be
passed from the host to the beginning of the worker datapath
and processed from there (i.e., check the flow table, check the
TCAM, apply actions, and pass the packet to the transmitting
functionality). Furthermore, to avoid the inserted packet
being output from the switch out of order in the flow, addi-
tional statistical information would need to be gathered to
enable an insertion of the packet in the correct position in a
queue of outgoing packets of the flow. In contrast, the host-
to-TX microengine enables packets to be sent from the host
directly to the end of the packet processing pipeline of the
switch.

FIG. 3 is a diagram of flow entry 73.

FIG. 4 is a diagram of rule action structure 84.

FIGS. 5A and 5B together form a figure, FIG. 5. FIG. 5 is
a flowchart of a method 200 of operation of the system 1 of
FIG. 1. A first packet of a new flow is received (step 201) onto
an OpenFlow switch. A hash is generated from the first packet

20

40

45

50

55

8

and the hash is used to direct at least a descriptor for the first
packet to one of the worker processors (step 202). A flow table
lookup is then performed (step 203) using a flow table lookup
functionality, but no matching flow entry is found. Because
no matching flow entry is found, a TCAM lookup operation is
performed (step 204) using a TCAM lookup functionality, but
no match is returned from the TCAM lookup functionality. As
a result of there being no match found in the flow table nor in
the TCAM, a request OpenFlow message is sent (step 205)
from the OpenFlow switch to an OpenFlow controller
requesting instructions on what to do with the first packet. A
response OpenFlow message is received (step 206) back from
the OpenFlow controller. The response OpenFlow message is
indicative of an action to apply to the first packet. The Open-
Flow switch applies (step 207) the action to the first packet
and thereby outputs the first packet from an output port of the
OpenFlow switch. In response to the response OpenFlow
message, the TCAM lookup functionality is updated (step
208) so that the TCAM lookup functionality has a TCAM
entry for the flow. The updating occurs before a second packet
of'the flow is received. A flow entry for the flow is added to the
flow table, but the action portion of the flow entry is an
instruction to perform a TCAM lookup operation. The second
packet of the flow is then received (step 209). As was done
with the first packet, a hash is generated from the second
packet (step 210) and the hash is used to direct a descriptor for
the second packet to the same worker processor that handled
the descriptor for the first packet. A flow table lookup opera-
tion is performed, but the returned action is the instruction to
perform a TCAM lookup. Accordingly, the TCAM lookup
operation is performed (step 211) and a match is found. The
matching TCAM entry identifies the action (the action that
was determined by the OpenFlow controller in response to the
first packet). The flow table functionality is then updated (step
212) such that the flow table entry for the flow directly iden-
tifies the action (and does not just contain an instruction to
perform a TCAM lookup operation). The action is applied
(step 213) to the second packet, and as a result the second
packet is output from the same output port from which the
first packet was output. At this point the flow table contains a
flow entry for the flow, and this flow entry identifies the
action. Subsequent packets of the flow are processed by the
same worker processor that in turn causes a flow table lookup
to be performed. The flow table lookup results in a match, the
indicated action (the action portion of the matching flow
entry) is determined, and the indicated action is applied to the
subsequent packet, without any TCAM lookup operation
having been attempted, and without any request OpenFlow
message having been sent to the OpenFlow controller.
Although the present invention has been described in con-
nection with certain specific embodiments for instructional
purposes, the present invention is not limited thereto. The
flow table of the flow table lookup functionality need not
contain actions itself, but rather actions may be stored in an
action table and a flow entry in the flow table can contain a
pointer to the appropriate action in the action table. The flow
table and the action table are both parts of the flow table
lookup functionality, even though the action table is shared
with the TCAM lookup functionality. Although one transmis-
sion processor is described above and the fast-path is said to
pass through this one transmission processor, the load many
actually be shared among multiple transmission processors in
which case the multiple transmission processors are consid-
ered together to be one transmission processing functionality
or processor. Accordingly, various modifications, adapta-
tions, and combinations of various features of the described

US 9,299,434 B2

9

embodiments can be practiced without departing from the
scope of the invention as set forth in the claims.

What is claimed is:

1. A method comprising:

(a) receiving a first packet of a flow onto an OpenFlow
switch;

(b) generating a hash from a header of the first packet, and
using the hash to direct a descriptor for the first packet to
one of a plurality of processors such that the descriptors
for all packets of the flow are directed to the same one
processor;

(c) performing a flow table lookup operation on a flow table
and finding no flow entry in the flow table for the flow,
wherein the flow table lookup operation is performed by
a flow table lookup functionality;

(d) performing a TCAM (Ternary Content Addressable
Memory) lookup operation and finding no TCAM entry
for the flow, wherein the TCAM lookup operation is
performed by a TCAM lookup functionality;

(e) sending a request OpenFlow message to an OpenFlow
controller;

(f) receiving a response OpenFlow message from the
OpenFlow controller, wherein the response OpenFlow
message is indicative of an action;

(g) applying the action to the first packet and thereby out-
putting the first packet from an output port of the Open-
Flow switch;

(h) in response to the response OpenFlow message updat-
ing the TCAM lookup functionality so that the TCAM
lookup functionality has a TCAM entry for the flow,
wherein the updating of (h) occurs before a second
packet of the flow is received;

(1) receiving the second packet of the flow onto the Open-
Flow switch;

(j) generating a hash from a header of the second packet
and using the hash to direct a descriptor for the second
packet to the same one processor to which the descriptor
in (b) was directed;

(k) performing a TCAM lookup operation and thereby
using the TCAM entry to identify the action;

(1) updating the flow table functionality such that a flow
table entry for the flow indicates the action, and wherein
(1) occurs after the second packet is received in (i); and

(m) applying the action to the second packet and thereby
outputting the second packet from the output port of the
OpenFlow switch, wherein (a) through (m) are per-
formed by the OpenFlow switch.

2. The method of claim 1, wherein a flow entry that matches
the flow is added to the flow table after the first packet is
received in (a) and before the second packet is received in (i),
and wherein the flow entry at the time the second packet is
received in (i) stores an instruction to perform a TCAM
lookup operation.

3. The method of claim 1, wherein the response OpenFlow
message received in (f) results in the first packet being output
from the OpenFlow switch without said one processor having
determined the action for the first packet.

4. The method of claim 1, wherein the OpenFlow switch
has a primary data path through which non-exception packets
pass from the plurality of processors, through a transmission
processor, and to one of a plurality of output ports of the
OpenFlow switch, wherein the OpenFlow switch also has an
interface through which the OpenFlow switch communicates
OpenFlow messages, and wherein the OpenFlow switch has a
fast-path path from the interface to the transmission proces-
sor.

10

15

20

25

30

35

40

45

50

55

60

65

10

5. The method of claim 4, wherein the fast-path path passes
through a queue, and wherein the queue is exclusively for
communications between the interface and the transmission
processor.

6. The method of claim 5, wherein the OpenFlow switch
includes a host processor disposed on a first printed circuit
board and a network flow processor disposed on a second
printed circuit board, wherein the host processor causes the
updating of (h) to occur by interacting across the interface
withthe TCAM functionality, and wherein said one processor
of (b) does not initiate or control the updating of (h).

7. The method of claim 5, wherein the fast-path path
includes a dedicated fast-path processor, wherein the dedi-
cated fast-path processor receives information from the inter-
face, wherein the information received is information from
the response OpenFlow message of (h), and wherein the
dedicated fast-path processor translates the information into a
descriptor and then supplies the descriptor to the transmission
processor.

8. The method of claim 1, wherein the hash of (b) is gen-
erated using a hash function, wherein a hash is generated for
each incoming packet and the hash is then used to direct a
descriptor for the packet to one of the plurality of processors,
wherein the descriptors for all packets of a flow are directed to
the same processor, and wherein the hash function causes
descriptors to be spread across the plurality of processors
such that each processor receives descriptors for packets of
one or more flows.

9. The method of claim 4, wherein the transmission pro-
cessor does not initiate any flow table lookup operation nor
does the transmission processor initiate any TCAM lookup
operation, and wherein the transmission processor retrieves
packets from a memory and then supplies the retrieved pack-
ets to the plurality of output ports.

10. A method comprising:

(a) receiving a first packet of a flow onto an OpenFlow
switch, wherein the OpenFlow switch includes a
memory, a worker processor, flow table functionality, a
TCAM(Ternary Content Addressable Memory) func-
tionality, and a transmission processor, wherein the flow
table functionality includes a flow table;

(b) storing the first packet into the memory, wherein the
first packet has a header;

(c) the worker processor retrieving the header of the first
packet from the memory, generating a hash from the
header, and using the hash to initiate a flow table lookup
using the flow table functionality;

(d) the flow table functionality performing a flow table
lookup operation but not returning a match for a flow key
of the flow;

(e) the worker processor initiating a TCAM lookup opera-
tion using the TCAM lookup functionality;

() the TCAM lookup functionality performing a TCAM
lookup operation but not returning a match for the flow
key of the flow;

(g) inresponse to neither of the flow table lookup operation
nor the TCAM lookup operation returning a match the
worker processor causing a flow entry for the flow to be
added into the flow table, wherein the flow entry
includes an instruction to perform a TCAM lookup;

(h) sending a message to an OpenFlow controller;

(1) receiving a response message back from the OpenFlow
controller, wherein the response message is indicative of
an action to be performed on the first packet;

(j) updating the TCAM functionality with the action so that
the flow key for the flow is associated in the TCAM

US 9,299,434 B2

11

functionality with the action, wherein the worker pro-
cessor is not involved in the updating of the TCAM
functionality;

(k) the transmission processor retrieving the first packet
from the memory and outputting the first packet from the
OpenFlow switch in accordance with the action,
wherein the worker processor is not involved in the
retrieving of the first packet nor is the worker processor
involving in outputting the first packet from the Open-
Flow switch, wherein (a) through (k) occur before a
second packet of the flow is received onto the OpenFlow
switch;

(D) receiving the second packet of the flow onto the Open-
Flow switch;

(m) storing the second packet into the memory, wherein the
second packet has a header;

(n) the worker processor retrieving the header of the second
packet from the memory, generating a hash from the
header, and using the hash to initiate a flow table lookup
using the flow table functionality;

(0) the flow table lookup functionality performing a flow
table lookup operation and returning a match for the flow
key of the flow, wherein the flow table functionality
returns the instruction to perform a TCAM lookup;

(p) the worker processor initiating a TCAM lookup opera-
tion using the TCAM lookup functionality;

(q) the TCAM lookup functionality performing a TCAM
lookup operation and returning a match for the flow key
of the flow, wherein the TCAM functionality returns the
action;

(r) the worker processor initiating an updating of the flow
entry in the flow table so that the flow entry no longer
includes the instruction to perform a TCAM lookup
operation but rather so that it now includes the action;
and

(s) the transmitter processor retrieving the second packet
from the memory and outputting the second packet from
the OpenFlow switch in accordance with the action,
wherein the transmission processor initiates no flow
table lookup operations and initiates no TCAM lookup
operations, wherein (a) through (s) are performed by the
OpenFlow switch.

11. The method of claim 10, wherein the flow table is stored

in the memory.

12. The method of claim 10, wherein the memory is a
semiconductor memory integrated circuit, and wherein the
worker processor and the transmission processor are parts of
a network flow processor integrated circuit.

13. The method of claim 12, wherein the OpenFlow switch
further comprises a host processor, wherein the message is
sent in (h) out of the host processor, and wherein the response
message received in (i) onto the host processor.

14. An OpenFlow device comprising:

a flow table lookup functionality;

a TCAM (Ternary Content Addressable Memory) lookup

functionality; and means: 1) for receiving a first packet

20

30

35

40

45

12

of a flow and in response thereto adding a flow entry for
the flow into a flow table, wherein the flow entry includes
an instruction to perform a TCAM lookup operation, 2)
for sending a message to an OpenFlow controller, 3) for
receiving a response message from the OpenFlow con-
troller and in response thereto updating the TCAM
lookup functionality with an action indicated by the
response message, 4) for receiving a second packet of
the flow and in response thereto performing a lookup
table operation and returning the instruction to perform
a TCAM lookup operation, 5) for performing a TCAM
lookup operation in response to the returning of the
instruction to perform a TCAM lookup operation, and
returning the indication of the action, and 6) for causing
the indication of the action to be stored in the flow entry.

15. The OpenFlow device of claim 14, wherein the means
includes a plurality of input ports, a plurality of output ports,
a host processor and a part of a network flow processor
integrated circuit.

16. The OpenFlow device of claim 15, wherein the flow
table is stored in a memory integrated circuit, wherein the
network flow processor integrated circuit and the memory
integrated circuit are two different integrated circuits.

17. The OpenFlow device of claim 14, wherein a first
TCAM lookup operation is performed in response to the first
packet being received by the means, and wherein a second
TCAM lookup operation is performed in response to the
second packet being received by the means.

18. The OpenFlow device of claim 14, wherein the means
includes a worker processor and a transmission processor,
wherein the worker processor generates hashes for use in flow
table lookup operations, wherein the transmission processor
outputs the first and second packets from the means but does
not initiate any flow table lookup operations nor any TCAM
lookup operations, and wherein the worker processor is not
involved in the updating of the TCAM lookup functionality in
response to the response message from the OpenFlow con-
troller.

19. The OpenFlow device of claim 14, wherein the means
has a primary data path through which non-exception packets
pass from worker processors, through the means to a trans-
mission processor, wherein the means also has an interface
through which the means communicates with an OpenFlow
controller, and wherein the means also has a fast-path path
from the interface and to the transmission processor, wherein
the fast-path path does not pass through any of the worker
processors.

20. The OpenFlow device of claim 14, wherein a host
processor uses the fast-path path to inject packets into the end
of'the primary data path so that the injected packets are output
from the means by the transmission processor, wherein the
injected packets do not pass through any of the worker pro-
Cessors.

